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Vw~~~~~~ u ~ABSTRACT

The Kalman filter is a data assimilation scheme which, unlike currently

operational methods such as optimal interpolation (01), makes systematic use

of forecast model dynamics in order to accurately determine the evolution of the

forecast error covariance matrix. Previous studies with a simple one-dimen-

sional model indicated that the Kalman filter, if applied operationally,

would yield analyzed and subsequent forecast fields superior, to those resulting

from 01. These studies did not address the enormous computational burden

that the Kalman filter would appear to pose if applied in an operational setting,

to an actual numerical weather prediction (NWP) model.

In this report we introduce a number of techniques which, taken together,

reduce dramatically the computationalcomplexity of the Kalman filter. The

new filter algorithm gains its efficiency, in part, by taking explicit advan-

tage of the fact that forecast errors are significantly correlated only over

rather small distances. It also utilizes fully the vector-processing capa-

bilities of the CYBER 205 computer. Part of the overall method is an analysis

algorithm which processes observations one at a time, ioe., it loops on obser-

vations rather than analysis grid points, thereby eliminating both the neces-

sity of matrix inversions and the necessity of restarting the entire analysis

to accomodate late-arriving observations. This analysis algorithm would be

useful in 0I schemes as well as in the Kalman filter.

We apply the Kalman filter to a two-dimensional shallow-water channel

model. Numerical experiments demonstrate, first of all, that the filter is

indeed computationally feasible in two dimensions. The results show also

that actual forecast error correlations, which are computed exactly by the
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Kalman filter differ markedly from the rather simple, homogeneous, correla-

tions prescribed currently in the NMC OI analysis system. The experiments

suggest a number of improvements to our computational approach, which should

render the Kalman filter practical for operational data assimilation into

fully three-dimensional NWP models.
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I. Introduction

Data assimilation methods are designed to combine observations of the

atmosphere at a given time with a forecast valid at that time, in such a way

as to determine the best possible estimate of the atmospheric state. Funda-

mental considerations imply that, under rather mild assumptions. the statis-

tically optimal estimate is obtained by linearly combining the set of obser-

vations and the forecast field, and weighting each according to its error co-

variance matrix. Thus, two key ingredients of optimal interpolation (1O)

analysis schemes are the forecast and observation error covariances. Analysis

accuracy depends strongly on the accuracy with which these covariances are

specified. The forecast error covariance is usually the less accurately known

of the two. It is specified in the OI system at NMC by assuming certain time-

and space-independent forecast error correlation functions and by assuming a

sim ple spatial dependence for the growth rate of forecast error variances.

Recent studies, summarized in Ghil et al. (1982) have suggested the

Kalman filter as a potential alternative to the conventional OI methodology.

The Kalman filter differs from OI primarily in that it determines the forecast

error covariance accurately, by using the forecast model itself to evolve

the covariance in time. This difference is crucial. The Kalman filter pro-

perly accounts for propagation of information between regions of different

data density and quality, thus leading to superior analyses and subsequent

forecasts. On the other hand, the correct evolution of the forecast error

covariance given by the Kalman filter, would appear to present an enormous

computational burden for actual numerical weather prediction (NWP) models.

Previous studies have been carried out using simple one-dimensional models.

In this report we introduce a number of techniques which, taken together,

reduce dramatically the computational complexity of the Kalman filter. We
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apply the new filter algorithm to assimilate data into a two-dimensional

shallow-water channel model. The experiments demonstrate, first of all,

that the computation is indeed feasible for a two-dimensional model. Second,

they both confirm and extend the earlier, one-dimensional results. In parti-

cular, they show clearly that actual forecast error correlations differ

markedly from the rather simple, homogeneous, correlations prescribed currently

in the 0I system at NMC. Third, by simulating different data distributions,

the experiments show in a precise and quantitative way which distributions

are the most effective at reducing overall forecast error. The Kalman filter

is ideal for carrying out such observing system simulation experiments (OSSE)

because it determines forecast error variances accurately.

The key idea we have used in reducing the computational complexity of

the Kalman filter is to calculate only those elements of the covariance ma-

trix which differ significantly from zero, and we have organized our algorithm

around this approach. Since covariances tend to zero with increasing distance,

this means that we calculate and store only a number of diagonals of the fore-

cast error covariance matrix, rather than the entire matrix. Since the fore-

cast model dynamics must be applied repetitively to these diagonals, we also

increase computational efficiency by explicitly formulating the forecast

model as a matrix, whose elements need be calculated only once. This matrix

also consists of only a small number of nonzero diagonals, and its action on

the forecast error covariance matrix is calculated by an algorithm for dia-

gonalwise matrix multiplication which was designed for efficient computation

on the CYBER 205 vector processor at NMC.

Our Kalman filter scheme also implements an algorithm which processes

observations serially, i.e., one at a time: the algorithm loops over the

observations, rather than analysis grid points. This algorithm eliminates
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both the necessity of matrix inversion and the necessity of restarting the

entire analysis to accomodate late-arriving observations. This analysis

algorithm would be useful in OI schemes as well as in the Kalman filter.

After reviewing the essentials of Kalman filtering in Section II, we

describe our method for evolving the forecast error covariance matrix in

Section III. The serial observation-processing algorithm is detailed in

Section IV. The shallow-water model is formulated in Section V and the

numerical results are presented in Section VI. Concluding remarks appear

in Section VII. This paper is meant, in part, as a technical report, and

a number of the technical details are explained in three appendices.
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11. The Kalman Filter

In this section we describe the essentials of the Kalman filter. More

detailed information can be found in standard texts such as Gelb (1974) and

Jazwinski(1970), and in Ghil et al. (1981) and Cohn (1982).

Suppose we are given a numerical forecast model

'14J5,~ < -t -i ;(2.1)

Here W is the forecast vector at time step k and 4%.1is the analysis

vector at the previous time step; we simply define V I i if no

observations were analyzed then. Both forecast and analysis vectors have

length n, the number of degrees of freedom of the model. In a finite-difference

model, say, this n is the number of grid points times the number of dependent

variables. The n x n dynamics matrix may depend on time, j ' "f,

and reflecting model nonlinearity3 depends on Ias well, - I' '

Equation (2.1) simply sets up a notation in which we will view one time

step of a forecast as being a matrix-vector multiplication. The trivial

observation that one time step can be viewed as such will actually be one

key to our computational simplification of the Kalman filter.

Since the objective of an analysis system is to estimate the true atmos-

pheric state, whose evolution is modeled imperfectly by (2.1), we assume

that the true state, denoted by IAf , evolves instead according to

(2.2a)

where t ) and where the model error, is a ran-

dom n-vector which is white in time and has mean zero and covariance matrix A:

0 000 r \; 00 E~g=;0 ::, 0 E (01t)($R ) - ALSO Q (2.2b c)E W),. ol E )
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Here the symbol E denotes the expectation, or ensemble-averaging operator,

the superscript T denotes the transpose, and is the Kronecker delta,

% -O for h and % -I . Equations (2.2) actually define what we

mean by the true atmospheric state: it is the n-vector k .

We assume further that meteorological observations are in fact

linear combinations of elements of the true state vector f , contaminated

by white noise:

(2.3a)

0

The length of the observation vector L is the number of observations p

available at time k, '- S . The observation matrix HA accounts for

interpolation between model grid points and observation locations, and for

any necessary conversion between observed variables and state variables, e.g.,

between satellite radiances and temperatures. The observation error, 

is a random p-vector which is assumed to have mean zero and covariance matrix

R , and is assumed to be uncorrelated with the model error:

f ~~~~~~~~~~~~~~~~~~~~. 
t If : 0 E(t )(f ) 0 o g 0 Am f(2.3d)

Under the stated assumptions. the extended Kalman filter (EKF) is the

data assimilation system

:: 0 : : : : 0

(2.4a)

= tit.W<,: + Qa,, : ::/(2.4b)% ., ~.~ ~~~+ Q, A,.
-T~~~~~~~~-- P j ? 1R~j A::(2.4c)

Allm-A Au Ha + 
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(2.4d)

0. o4 ~~= ah ~~~+ K*(< - Her) ~(2.4e)UliJ
for k=1,2,3,... . Equations (2.4a,b) are the state forecast and estimation

error covariance forecast, respectively. Equation (2.4c) gives the Kalman

gain matrix which is the weight with which observations and forecast

are combined in (2.4e) to yield the analyzed field (AYl . Equation (2.4d)

gives the matrix which is needed at the next time step in (2.4b).

In case the dynamics are linear, i.e., if f does not depend on w,

then the matrices and in (2.4b-d) are precisely the forecast

and analysis error covariance matrices, i.e.,

(2.5a,b)

In this linear case, equations (2.4a-e) are known simply as the Kalman, or

Kalman-Bucy filter, and they represent a data assimilation scheme which is

optimal in the sense of minimizing the analysis error and subsequent fore-

cast error at every grid point, given all current and previous observational

information. If in addition the model error and observational error

are Gaussian, the Kalman filter is optimal in an even broader mathe-

matical sense (e.g., Jazwinski, 1970).

In the nonlinear case, the EKF (2.4a-e) is only a first-order approxi-

mation to the optimal filter. From a computational standpoint, however, it

is clear that the EKF and the Kalman filter are nearly identical, and most

nearly-optimal alternative nonlinear filters are also similar to the Kalman

filter. Since our purpose in this paper is to study the computational issues

in optimal filtering, equations (2.4a-e) are the primary consideration.
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We also point out that most of the assumptions we have made have analo-

gues in the formulation of present-day optimal interplation (OI) analysis

schemes (e.g., Bergman, 1979; Lorenc, 1981). Many of these assumptions can

be relaxed. For example, biases can be allowed .in the model and observational

errors (2.2b, 2.3b)., correlations between these errors (2.3d) can be accounted

for, and the errors need not even be white (2.2c, 2.3c). Each of these gener-

alizations is accounted for by additional terms in the corresponding optimal

filter (Jazwinski, 1970, pp. 158-159 and 209-218). Again, since the main

computational issues arise already in (2.4a-e), we shall not pursue these or

other generalizations here.

In the present study we will take the model and observational error co-

variance matrices, and , to be known. In an operational

setting, one would want to actually estimate and RL. Phillips (1982)

has pointed out, for example, that accurate knowledge of these matrices can

be crucial to the successful performance of the Kalman filter. Dee et al.

(1984, 1985) show that it is possible to estimate and during

the assimilation process itself, at the cost of calculating a number of

additional Kalman filters. Once again, even when and must be

estimated, equations (2.4a-e) encompass the main computational burden.

In addition to assuming knowledge of k and , we will take the

dynamics to be linear, so that the filter (2.4a-e) is indeed optimal and all

its ingredients are known. Thus we have constructed an environment in which

many questions regarding data assimilation can be answered in a precise way.
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III. Computational Considerations in the Forecast Step

The fundamental difference between our formulation of the data assimilation

(filtering) problem in Section II and the way in which OI schemes are formulated

is that we have stated in a precise and convenient way what is meant by the

true atmospheric state: eqs. (2.2). This statement, combined with the forecast

model (2.1) and definitions (2.5a,b) leads, in the linear case, immediately

to equation (2.4b) which gives the evolution of the forecast error covariance

matrix t :
T

V =SK I E(t< \ - sK ) (uK-j:- if-\) 3 1 + VEl (,y Q) ( Ad,)Q,k- it~ *~~~ E 
In fact, it is the appearance of eq. (2.4b) which distinguishes the Kalman

filter (2.4a-e) from OI schemes: in the Kalman filter, the forecast error

covariance matrix is known precisely, whereas in 0I schemes it is approximated

by means of several ad hoc assumptions (e.g., Cohn and Morone, 1984; Morone

and Cohn, 1984, 1985). This difference is crucial. The evolution equation

(2.4b) determines, for example, how errors propagate between data-sparse and

data-dense regions, and is the basis for the optimality properties possessed

by the Kalman filter.

The "analysis" part of the Kalman filter, (2.4c-e), is identical to OI:

given the forecast error covariance matrix, the Kalman filter and OI are

essentially the same. Equations (2.4c-e) are merely a rather shorthand way

of writing the usual OI analysis equations (e.g., Cohn et al., 1981). In
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operational implementation of 1O, though, only the diagonal elements of 

that is, the analysis error variances, are computed. Also, data selection

procedures which reduce the computational effort in calculating the gain ma-

trix (2.4c) are invoked. An efficient algorithm for implementing the analysis

equations (2.4c-e) will be described in Section IV.

The appearance of equation (2.4b) for the evolution of the forecast error

covariance matrix not only accounts for the optimality properties of the

Kalman filter, but also represents the main computational burden of the filter.

In the current section we discuss means of reducing this burden. Our remarks

here are of a rather general nature: they apply to Kalman filtering in mul-

tiple space dimensions. The particular model to which we have applied these

techniques is not discussed until Section V.

The forecast error covariance equation (2.4b) is the most expensive

calculation in the Kalman filter because it involves multiplication of n x n

matrices; the state forecast (2.4a), by contrast, involves only matrix-vector

multiplication. In a brute-force approach, the estimation error covariance

forecast would therefore require 2n times as much work as the state forecast.

For VI )0 or 10 , typical of current numerical weather prediction

(NWP) models, this is clearly prohibitive. We have developed a number of

strategies to reduce this burden to manageable levels.

First, we observe that significant savings can be realized by explicitly

computing and storing the elements of the dynamics matrix . This is

not, of course, what is done in the usual NWP code: 'Pis available only

as an operator, or procedure, for calculating US given V4 I . In the co-

variance equation (2.4b), however) the same dynamics are needed repeatedly,

2n times in fact, so it is best to calculate them once and for all. Doing

* so reduces the computational expense of (2.4b) by about an order of magnitude:



10

most of the expense in conventional NWP codes lies in what can be thought of

as computing the elements of the dynamics matrix , rather than in performing

the matrix-vector multiplication in (2.4a).

The cost, of course, is the additional storage. This may pose a problem in

an operational setting, although we point out that (2.4b) could be carried out

at lower resolution than (2.4a), reducing both storage and time requirements.

One should also keep in mind that computers with about 100 times the storage

and speed of the CYBER 205 are expected to be commercially available in two

years.

Second, we point out that the dynamics matrix I , as well as the co-

variance matrices , and -should be stored by diagonals rather

than by the conventional column storage, and that all matrix-matrix and matrix-

vector operations should be carried out by diagonals. This point is crucial

for reducing both storage and execution-time requirements. If the dynamics

are based on a finite-difference scheme, then has a banded structure: a

small number of diagonals of contain nonzero elements, and all the re-

maining diagonals are zero. It is natural, then, to store only the nonzero

diagonals, each as a vector, and to formulate the matrix-vector operation

(2.4a) and matrix-matrix operations (2.4b) in terms of operations with these

vectors. Our choice of dynamics matrix I will be described in detail

in Section V.

Madsen et al. (1976) have shown how to multiply a matrix by either a

vector or another matrix, using operations only on the diagonals of the matrices.

We show in Appendix A how to evaluate the matrix triple product in (2.4a) by

diagonalwise operations, in such a way that, essentially, is overwritten

on . Here we only note that diagonalwise matrix operations are very

efficient on the CYBER 205 vector processor: the diagonals (vectors) are very
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long, they are few in number, and they contain few, if any, zeros.

This brings us to the third, and most important point concerning imple-

mentation of (2.4b). It is well known that forecast error correlations (and

hence covariances) tend rapidly to zero with distance. That is, the matrices

have a banded structure, similar to ' , in which only a small number

of diagonals differ significantly from zero. The remaining diagonals, in fact

most of ,can be considered to be exactly zero. Thus we introduce

what we refer to as the banded approximation in our calculation of (2.4b).

Data selection procedures used in OI schemes are similar in spirit to this

banded approximation.

The banded approximation works in the following way. For a given ex-

periment, we select a bandwidth b, which is the number of grid points away

from each base point over which covariances will be calculated. Only those

diagonals of within this distance are stored. The operation -1 t e

acts only on the stored diagonals of : the rest are assumed to be

zero and do not enter the computation (Appendix A). This operation also intro-

duces additional diagonals in principle, but they are not calculated: they

are assumed to be negligibly small. The diagonals of QL, within band-

width b are then added to those of I ? 1 \ , yielding with

bandwidth b. The experiments reported in Section VI demonstrate the accuracy

of the banded approximation for different choices of b.

The banded approximation reduces dramatically both the execution time and

storage requirements of the Kalman filter. We will calculate here the storage

required as a function of bandwidth, and defer discussion of execution time

to Section V. Our experience to date has been that storage poses more of a

problem than execution time. All our computations are performed in central

memory, in order to circumvent paging problems.
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For bandwidth b, the number of grid points in a given coordinate direction

which are correlated with each base pointis 2b+1, i.e., b points to each side

of the base point plus .the base point itself. In a d-dimensional problem, then,

the number of correlated grid points is :\ , assuming we calculate

in squares (d=2) or cubes (d=3), rather than circles or spheres, say. In a

problem with v dependent Variables (v=3 for the shallow-water equations, and

d=2), the number of nonzero elements in each row of is therefore 'f(.

The number of rows of is simply n=Nv, where N is the total number of

grid points in the model (see remarks following eq. (2.1)). The total storage

S required for P under the banded approximation is therefore

By contrast,

if the full I were stored, without the banded approximation. In either

case, in principle one could reduce the storage by a factor of almost 2 by

taking advantage of the fact that P and r are symmetric matrices.

In fact, the diagonalwise matrix multiplication algorithm (Appendix A) does

calculate only the lower triangular part of P , and references only the

lower triangular part of P . However, the algorithm does not allow the

lower triangular part of to be overwritten on that of : storage

is required, essentially, for (the nonzero diagonals of) one covariance matrix.

In Table I, we list the value of S/N e%5) i.e., the storage

required per grid point, as a function of b for the case v=3 and d=2. We also

give Nl = 5~ *i for the same case, with S = 3XO ,.as

well as the maximum dimensions of a uniform square grid for this S, namely .
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Currently there are: X(I O halfwords of memory on the CYBER 205 at NMC,

of which £fXi° are accessible to the user. The last row of Table I

gives the figures corresponding to the preceeding rows, but for the case in

which the full p is stored.

The last row shows that a grid of only about 580 points, e.g., a 24 x 24

grid, is permitted if the banded approximation is not used. In fact, we were

able to run full- P experiments on a 24 x 24 grid, enough storage still

being available for T, H, Q and R, but not on a 25 x 25 grid. On the other

hand, the table shows that a 64 x 64 grid is permissible for b=4, and 82 x 82

for b=3. Experiments reported in Section VI indicate that a bandwidth of 3

to 4 gives good accuracy, independently of resolution. The accuracy of the

banded approximation could be improved even further, or the number of required

diagonals decreased, by extrapolating to actually calculate nearby diagonals

rather than setting them to zero.

As a final remark concerning storage of ? , we note that a further

reduction of storage by a factor of about 4 is possible if, instead of storing

0.W p , we store separately the forecast and analysis error variances

diagonal part of

and correlation matrices C ,
wl

Since the numerical values of correlations lie between -1.0 and +1.0 by defi-

nition, eight bits of storage per correlation, say, would probably allow ade-

quate precision: entire halfwords (or fullwords) are not necesary. The cost

of this approach, which we have not yet tried, would be somewhat increased

execution time.
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IV. Computational Considerations in the Analysis Step

The "analysis step" (2.4c-e) is generally less expensive in meteorolo-

gical applications than the "forecast step" (2.4a,b) because at least one

dimension of most of the matrices and vectors involved in the analysis step

is p, the number of observations, which is usually much smaller than the

number of state variables n: is p x n, is n x p and is

p x p. For global-scale analysis, the number of observations per time step

is far smaller than n, and even if observations are grouped in six-hour win-

dows, their number is much less than n. Even for the next generation of

mesoscale models, which will assimilate wind-profiler data, one expects model

resolution to exceed data quantity.

Still, the analysis step does represent a large calculation, and one must

pay attention to the computational cost. The most expensive part of the ana-

lysis step would appear to be (2.4c), in which one must either invert the p x p

matrix A ? A +$J or, more simply, solve n linear systems with

this matrix as the coefficient matrix. A remarkable fact about the analysis

step is that it can be formulated as a computationally efficient algorithm

which does not require inverting, or solving systems with, p x p matrices.

The intuitive idea is to view the observations at time step k as occurring

in fact over a sequence of "time steps" over which no dynamics (2.4a,b) take

place. One should therefore be able to apply the analysis step (2.4c-e) to

each observation in turn, ending up with the same result as if the observa-

tions had been processed simultaneously. That is, performing p analyses

according to (2.4c-e), one observation per analysis, should be, and in fact

is, equivalent to performing a single analysis using all p observations.

Such an algorithm is very efficient because the linear systems to be solved

are now all scalar: p=l for each analysis. This idea of processing observations
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serially, i.e., one at a time, is a familiar one in the estimation literature

and has been implemented in a number of ways (e.g., Bierman, 1977). We de-

scribe a very simple and rather standard implementation here.

Before describing the algorithm, we stress again that the Kalman analysis

equations (2.4c-e) are identical to the OI analysis equations, given a fore-

cast error covariance matrix . The serial observation-processing algo-

rithm to be described would therefore be useful in OI schemes as well as in

the Kalman filter. The algorithm is merely a convenient and efficient way of

implementing the analysis equations; it is algebraically equivalent to (2.4c-e).

The algorithm represents a significant departure from standard OI implementa-

tions, such as the OI system at NMC which loops over analysis grid points

rather than observations. Serial processing of observations would be especially

convenient in an operational setting since observations are processed as they

become available: there would.be no need to start the analysis from scratch

at later data cutoff times.

In formulating an analysis algorithm, one can and should take advantage

of the particular structure of observation error covariances. For example,

many pairs of meteorological observations have uncorrelated errors, such as

observations from different instruments. The algorithm we describe takes ex-

plicit advantage of this fact, and gains efficiency the more uncorrelated

observations there are. We begin by describing how the algorithm takes ad-

vantage of uncorrelated observations. Since all our discussion in this section

concerns the analysis at a single time step k, we will omit k as a subscript:

the observation model (2.3a,c) is written as

(4.1a)

:E (v) ( O = I ): (4.1b)
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and the analysis equations (2.4c-e) are written as

(4 .2a)

pU = (I - K ) , (4.2b)

That many pairs of observations are uncorrelated means that R has a

block-diagonal structure,

(4.3a)

where each block , j=1,2,...,J, is a X matrix and
A:

~% . - = ~~p , the number of observations at time step k. Thus there

are J batches of observations, LS SI ,each being a -vector,

such that different observations in the same batch may be correlated, but ob-

servations in different batches are not correlated. If we partition the full

observation vector S and the observation matrix H as

(4.3b,c)

where each is a , matrix, and similarly partition the observa-

tional error vector' , then the observation model (4.1a,b) becomes simply

:u00 00>s; = Hilt A: ° :,: 0 0 : (4.4a)

000 E(S)( 4)t = 2 j00500 f 00 : \; ~~(4.4b)

for j=1,2,...,J.
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Now, suppose we define

- s~~~~~~~~~V

(4.5a,b)

The precise statement that observations may be processed serially is that if

we calculate Y -t
K j I i 0 A SHN;. H toHi):, d: :(4.6a)

(4.6b)

(4.6c)

for j=1,2,...,J, then in fact,

OL

= ~~ R pand :5 (4.7a,b)

where ~J and ? are the analysis vector and analysis error covariance

matrixthat would be obtained from (4.2a-c). Equations (4.6) represent far

less computational effort than equations (4.2): the relevant dimension of

the matrices in (4.6) is , whereas in (4.2) it is p itself. In practice,

the maximum number of intercorrelated observations, such as those from a

single instrument, is far smaller than the total number of observations avail-

able. We prove the equivalence of (4.2) and (4.6) in Appendix B.

Equations (4.6) describe only one part of the serial processing algorithm:

we have shown so far only how to process uncorrelated batches of data inde-

pendently. The data within a batch are correlated and we must still show how

to process them serially, i.e., how to carry out a single step j of (4.6).

We will show, essentially, that one need only consider the case \ :

one can "decorrelate" those observations which are correlated. Before showing

how to do this, then, we first describe in detail how to implement (4.6)
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when .

In case = , i.e., batch j consists of a single observation un-

correlated with all the other observations, then j is a scalar, V is

a row vector of length n and \V is a column vector of length n. To conform

with the convention that matrices, column vectors and scalars are generally

denoted by upper-case Roman, lower-case Roman, and lower-case Greek letters,

respectively, we write S- :7 .- f lt Aj- .0 ; (4.8asb,c)
Equations (4.6) then become

-I

(4.9a)

? = (i 0\~~~ ; g ) Pj , : 0 0 ~~~(4.9bj

IA30 1 5 { 0 j 5 8 j~l) , 0(4.9c)

Noting that the factors in parentheses in (4.9a) and (4.9c) are scalars, and

that the vector P_ hj appears several times, we have finally the serial-

processing algorithm:

(4.10a)

5j -~ if % tV Erj 1 r ; ;(4.10b)
(4.10c)

(4.10d)

(4.10e)

; 0 0 '\ itit~t 0' 0 f 0 (4.10f)
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While equations (4.10) describe a computationally efficient algorithm

for assimilating a single observation, one must still pay attention to details

of implementation. For example, the vector is usually sparse, and its

sparsity must be taken into account. If the observation falls at a grid point,

then \ consists of a single one and the rest zeroes; V.f in (4 .10a) is

then simply a column of . We note also that when the banded approxi-

mation is applied, the outer product in (4.10f) can increase the bandwidth

in principle, but we do not calculate the extra bands. Finally we note that

the numerical stability of algorithm (4.10) can be enhanced by some additional

calculation (e.g., Bierman, 1977, p.28; Bucy and Joseph, 1968, pp.175-176),

although we have not encountered stability problems with the algorithm as it

stands.

It remains to show now only how to process correlated data, i.e., how to

process a batch of observations VS. with . The idea is simply to

decorrelate the observations. Suppose we let

(4.11)

be a Cholesky decomposition of Vi (e.g., Isaacson and Keller, 1966), i.e.,

L) is a lower triangular matrix with all ones on the diagonal, and Wj is

diagonal. If we set

(4.12a,b,c)

then in terms of the tilde-quantities, the observation model (4.4a,b) can be

written

(4.13a)

E~t~s;)(W;) --RS .0; V i 0 000 00 ; : 0 : (4.13b)



20

Eqs. (4.13) and (4.4) are identical in form, but the new observation error co-

variance matrix is diagonal: the new observations .f' have uncorrelated

errors and can therefore be processed serially.

The additional work involved in processing correlated observations, then,

is that involved in (4.11), (4.12a) and (4.12b). This can in fact be done

serially: for i=1,2,...,¶j one calculates the I row of Lj , the

A d~~~~~~~~~~~~~~~~~~~~~~~~~~iagonal element of)A diagonal element of 'PC the A element of bt , the A row

of , and finally processes the observation (equations (4.10), but with

j replaced by i and with appropriate tildes). The amount of extra work is

not large since is usually rather small, as in the case of a radiosonde

ascent. Further, typically has a small bandwidth, which can be exploited

in the Cholesky decomposition. In addition, the Cholesky decomposition for

any % which is constant in time can be calculated once and for all.

As a final remark, we point out that in processing correlated observations

we are, in fact, solving linear systems, as indicated by (4.11, 4.12a,b). They

are small, however, compared with (4.2a): ? < ~ . They are also easier.

to solve than to solve (4.6a) directly: itself has more properties to be

exploited than does W ? +? -
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V. The Shallow-Water Model

We have chosen to apply the Kalman filter for a linear, two-dimensional

shallow-water system:

U t + + U lA;,tX t Xx - ( O ~ (4) v : °; - (5. la): S~~~an U + + + ( -O :(5.1b)
+~~ ~~ :4 k : 5 e

The coordinates x and y point eastward and northward, respectively, u and v

are the eastward and northward perturbation velocities, and ~ is the pertur-

bation geopotential. The mean zonal current is a function of y, =U (),

which is in geostrophic balance with the mean geopotential 

iU±0 Q= O , (5.2)

The Coriolis parameter is given by

C ~i°+ (5.3a)

The model domain is a 6000km by 6000km square extending from approximately

15 N to 75 N, and we take

: i 3 - as > l0 (5.3bec)

We specify periodic boundary conditions at the east and west boundaries, and

tangential flow (v=O) at the north and south boundaries.

The energy E of this system,

X E ai > | $ S (At t ;)¢ t 9> l lot cl 7(5.4a)
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satisfies

0 ." X ): i i- Ck\5vXL *(5.4b)

For the experiments reported here, we take U to be constant,

='~~-U = ~ O) MS- (5.5a)

which, in light of (5.4), gives rise to a stable, energy-conserving flow.

We also take

0 - .) W 5 $ u 18 , 1 en 0 0 0 0 0 t:(5.5b)
0

(5.5c)

cf. (5.2). Experiments with a barotropically unstable profile U(y) will be

reported in forthcoming work.

To obtain discrete dynamics , we have chosen to apply the Richtmyer

two step version of the Lax-Wendroff scheme (Richtmyer and Morton, 1967, Sec.

12.7 and 13.4) to the continuous system (5.1). This finite-difference scheme

is second-order accurate both in time and in space. In addition it has the

advantage of using only two time levels: a three-level scheme such as leap-

frog would artificially double the number of state variables, leading to in-

creased execution time and storage requirements, especially in the covariance

evolution equation (2.4b). Instead of Lax-Wendroff, we plan eventually to

incorporate a fully implicit scheme (Augenbaum et al., 1985; Cohn et al., 1985)

which also uses only two time levels, and is second-order accurate in time and

forth-order accurate in space. The fully implicit scheme would allow a large

time step and thereby reduce the cost of evolving the forecast error covariance.

While the version of Lax-Wendroff we have applied to (5.1) is rather

standard, our implementation of it is somewhat unusual because, as discussed in
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* Section III, we actually compute and store the elements of . The details

of this calculation are given in Appendix C.:. Since the coefficients in (5.1)

are independent of time, so iS and is therefore calculated only

once for a given model resolution. The cost of the forecast step (2.4a,b) is

simply that of the indicated matrix-vector and matrix-matrix operations.

We have run the Kalman filter for our model at various spatial resolutions

and for various specified bandwidths b of ' . Table II summarizes the

CYBER 205 CPU time which was required to advance to , eq. (2.4b),

as a function of b and of spatial resolution. The entries show that, in all

cases, the CPU times are well within acceptable limits. In fact, it is only

the lack of adequate storage capacity on the NMC CYBER 205 that limits the

resolution of the model: missing entries in the table correspond to experi-

ments which are not feasible due to the excessive paging they would require.

* The MFLOP rates indicated in the table demonstrate the efficiency of the

diagonalwise matrix multiplication algorithm described in Appendix A. The

MFLOP rates are nearly independent of bandwidth, since the average vector

(diagonal) length is, and the MFLOP rates increase rapidly with resolution,

as the average vector length increases. At 60 x 61 resolution, nearly 90%

of the peak efficiency of the CYBER 205 is attained.

Table II demonstrates both the necessity and the success of the banded

approximation. Only a very low resolution model is possible without the banded

approximation, and one time step on the 60 x 61 grid with bandwidth b=3 takes

only 2/3 the CPU time of one time step on the 20 x 21 grid without the banded

approximation. On the 60 x 61 grid, a conservative CFL calculation yields a

lob X 10
maximum time step of --- = 250 sec = 4.17 min With a 4-minute

4+00 YY S

timestep and the 2.15 CPU seconds per time step for the 60 x 61 grid with band-

* width b=3 indicated in Table II, this means it takes only 12.9 minutes to
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evolve the covariance matrix over one day of data assimilation. The analysis

step (2.4c-e) requires only a small additional amount of time, which depends

on how many observations are to be assimilated.
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VI. Numerical Experiments

The Kalman filter differs from OI schemes in that it uses forecast model

dynamics to attempt an accurate determination of the forecast error covariance

matrix ? . Since we take , HI Q and R to be known here, the Kalman fil-

ter determines ef exactly. The focus of our numerical experiments will be

to examine this v , and its dependence upon data distribution, model error,

and the banded approximation. This is done by plotting the forecast error

standard deviation fields, obtained from the main diagonal of , and the

correlation fields obtained by dividing off-diagonal elements of by

the standard deviations.

Most of the experiments were run on a 16 x 17 grid, with t = 18 min,

so that L = = 375 km and there are n = 3 x 16 x 17 = 816 state variables.

Results of high-resolution experiments were qualitatively similar to those

for the 16 x 17 grid, and will be discussed at the end of this section. We

take the observational errors to be uncorrelated, and to have standard devia-

tions

0 0
t = ~ - ~ ~%-1 (6.1a,b)

for wind observations and

20 W\ 6+ 10"S ao>>x toY~s~; :; : 0 (6.1c)

for geopotential observations: R is a diagonal matrix with entries

(and (+ placed according to the observing pattern H, which we

will vary in the experiments. Observations are made every 12 hours; in be-

tween observations we have simply -V r and = in place of

(2.4c-e), i.e., only (2.4a,b) are applied. The initial (analysis) error

covariance matrix, P , is taken to be diagonal, with the square roots

of the diagonal elements given by
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: 0 0t = X, = mYs% 10; - toe X Ilors VV ; (6.2a bic)

-each of t ) , ( )and K6; ) appears 16 x 17 times along the diagonal.

Solutions of the shallow-water system (5.1) are independent of the x-

coordinate if the initial data are, and our discretization I of (5.1) re-

tains this property. It follows that if the observing pattern is independent

4
of x and if Q_) and 0 are homogeneous in x, then and will be

homogeneous in x, i.e., the standard deviations will be independent of x

and the correlations will be independent of the x-coordinate of the base point.

Clearly we have chosen to be homogeneous in x (it is homogeneous in 

also). As described below, we will always take Q to be homogeneous in x

also. In all of our experiments, then, inhomogeneity of . in the x-direc-

tion is due solely to x-direction dependence of the observing pattern :

we will be able to study the dependence of upon data distribution in a

very precise way. A summary of the experiments appears in Table III.

As a simple test of the Kalman filter, in our first experiment we choose

an x-independent observing pattern: we observe each variable u, v, 4 at
each gridpoint along the center of the channel, i.e., at (1,9),(2,9),...,(16,9).

Thus there are 48 observations; H is a 48 x 816 matrix, each row of which

contains a single one and the rest zeros. In this experiment we also take

(6.3)

i.e., we assume that the forecast model is perfect. The banded approximation

is not used in this experiment: we calculate the Kalman filter exactly.

Figures 1, 2, and.3 show forecast error standard deviations and correla-

tions for this experiment at 10 days, well after the filter has settled into

steady state (cf. Ghil et al., 1981, esp. Sec. 4.3). Figures la, b, c show
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the forecast error standard deviations for V - / 1DwVs , u, and

v, respectively. Each field is independent of x, and has a local minimum

along the center line j=9, where observations were taken 12 hours previously.

In each case this local minimum is less than the corresponding observation

error standard deviation (6.1); in the case of h it is far less. The initial

error (6.2) has been reduced dramatically. The standard deviations for u and

v reach local maxima on both sides of the center line, then decrease smoothly

toward the north and south boundaries: the boundary condition v=0 is equiva-

lent to observing v there. On the other hand, the standard deviations for h

increase monotonically from the center line to the boundaries, faster toward

the north boundary than toward the south boundary, reaching the observational

error level of 20m at the north boundary. Evidently, "observing" v at the

walls has little effect upon h there.

In Figure 2 weshow +forecast error correlations at 10 days for the

first experiment. Since t is homogeneous in x, we only vary the y-coordi-

nate of the base point: Figs. 2a-e show, respectively, the forecast error

correlations centered at points (9,7), (9,8), (9 9), (9 10) and (9,11) One

notices immediately that the correlations are not very homogeneous in y: the

five panels are rather dissimilar. The correlations are also quite different

from the homogeneous correlation functions specified, for example, by the OI

system at NMCj whose contours are concentric circles. Significant correlations

exist well away from the base point. In Fig. 2a, for example, points along

the entire south wall are correlated with the base point with a coefficient of

greater than 0.5. The correlations for base points at and above the line of

observations (Figs. 2c,d,e) are somewhat less spread out than those for base

points below the center line (Figs. 2a,b).
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Figure 3 shows the L-+ correlations corresponding to the H- correla-

tions shown in Fig. 2. Again the correlations are not at all homogeneous in

y. Figure 3c, in which the base point is the central observing station (9,9),

is somewhat reminiscent of the .- + correlation used in the 1O system at NMC,

although its amplitude is decreased and two lobes are present downwind of the

base point. The other four panels are strikingly different from Fig. 3c, even

though the base points are only 1-2 grid points away from that of Fig. 3c.

This inhomogeneity is explained, at least in part, by the fact that the base

points in Figs. 3a,b,d,e are located in the midst of substantial gradients in

the height-field forecast error standard deviation (Fig. la), while this

gradient is (nearly) zero at the base point (9,9). Cohn and Morone (1984)

have shown that such gradients radically alter the shape of wind-height and

wind-wind forecast error correlations. Comparison of Fig. 6a of Cohn and

Morone (1984) with Figs 3a,b here suggests that this effect is a dominant

cause of the inhomogeneity seen in Figs. 3a-e. Whenever it is true that wind-

field forecast errors are related diagnostically to height-field forecast

errors, there can in fact be only one other cause of wind-height and wind-

wind forecasterror correlation inhomogeneity, namely inhomogeneity of the

height-height correlation itself (Cohn and Morone, 1984, Eqs. 2.15).

Experiment 1 is unrealistic in that a perfect model was assumed. Experi-

ment 2 is identical to Experiment 1, except that model error is present. We take

the model error to be uncorrelated, i.e., (i is diagonal. We take the model

error standard deviations to be independent of time and space: the squares of

X 0.5 ws (6.4a,b)

II ~ ~ ~ 6v X 10 v,~ : : ge -w Tu- x:bw lo~ 5-2X~, ~(6.4c)
* C-::: 1;-.36c. 5 : X
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* appear repeatedly along the diagonal of ;k=Q . Thus the (constant)

growth rate of model error for wind components is 0.5 ms' per 12 hours, and

is 6 m per 12 hours for heights.

Figures 4-6 are the analoguesiof Figs. 1-3 for the second experiment. The

panels of Fig. 4 show the same general patterns as those of Fig 1 while, as

expected, the forecast error standard deviations are now much larger. Along

the line of observations, the forecast error standard deviations are now some-

what larger than the observational error standard deviations (6.1).

The - + forecast error correlations for Experiment 2, shown in Fig.

5, are much more homogeneous than for the first experiment (Fig. 2). They

are also much less spread out, and nearly circular. The model error, which is

homogeneous and uncorrelated, has the effect of homogenizing and tightening

the -+ forecast error correlations. The correlations of Fig. 5 are in

fact, remarkably similar to the homogeneous ~ 4 correlation prescribed in
the OI system at NMC, even in scale. The mean e-folding distance in Figs.

5a-e is about 2 grid points, i.e., 750 km, while the e-folding distance used

at NMC is 707 km. One can conclude that if the model error of current opera-

tional models is homogeneous enough and uncorrelated enough to outweigh the

inhomogeneity of observing patterns and the correlations that arise from dyna-

mical causes, then a homogeneous, localized 4- correlation like that used

in OI may be adequate. The extent to which this is true of current and planned

models and observing systems remains to be seen.

The M- 4 forecast error correlations shown in Fig 6 are again rather

inhomogeneous, and the inhomogeneity can be explained by the same argument used

in reference to Fig. 3. The correlations now, however, are all quite small.

One concludes that forecast errors in this case are not geostrophic, or even

* nearly so. If they were, the correlations in Fig. 6 would more nearly resemble
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the usual OI t- correlation, or OI A-4 correlations accounting for: : : -I :; , Acorela ion :cou
gradients of height-field forecast error standard deviations (Cohn and Morone,

1984, Figs. 5a,6a), since the 4-4 correlations of Fig. 5 already resemble

strongly the usual 0I - correlation. This is probably because our homo-

geneous model error (6.4) feeds energy into ageostrophic, as well as geostro-

phic modes. We have not yet attempted to specify separately the amount of

model error in geostrophic and ageostrophic modes, or rotational and divergent

modes.

In the remaining experiments, numbered 3-6, we observe along a line per-

pendicular to the mean zonal current: u, v and 4 are observed at the 15

points (9,2), (9,3), ,... (9,16). Each of these experiments uses the same

model error covariance Q that was used in Experiment 2, eqs. (6.4). We will

study the effect of the banded approximation: Experiment 3 does not use the

banded approximation, while in Experiments 4-6 we specify the bandwidth

b = 5, 4, and 3, respectively. Apart from the bandwidth, Experiments 3-6 are

identical (see Table III). Again we plot the forecast error standard devia-

tions and correlations at 10 days.

Figure 7 shows the height-field forecast error standard deviations for

Experiments 3-6. The banded approximation appears to be a good one: differences

between Figs. 7a-d are generally less than one meter. The only large differences

are confined near the north wall. Forecast errors are actually highly correlated

along the entire length of this boundary, as other plots (not shown) have de-

monstrated, so that the banded approximation breaks down there. Still, there is

no effect more than 1-2 grid points from the boundary. Notice also that the

standard deviation at each grid point decreases slightly as the bandwidth is

decreased, whereas we know that the true standard deviation actually increases

slightly: the Kalman filter without banded approximation (Fig. 7a) is optimal.
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The banded approximation removes some variance from the system: zeroing out

off-diagonals of the covariance matrix makes it less positive definite. In

practice this should not be a problem if the decrease is small, and it can be

accounted for, if necessary, by increasing the model error covariance matrix Q.

For such a simple experiment, Fig. 7 demonstrates a surprising degree of

complexity. Of course, one no longer expects independence of x or ~, as in

Figs. 1 and 4, since the observing pattern now depends on x (it is a discrete

S -function), and the coefficients of the model (5.1) depend on y. The stan-

dard deviations are smaller to the southeast of the observing line than to the

northwest, indicating that this is the direction in which most of the informa-

tion propagates. Such effects of propagation of information are not accounted

for in present-day OI systems. Notice also that observing perpendicular to the

zonal current is more effective at reducing height forecast errors than ob-

serving parallel to it: away from the north boundary, the standard deviations

in Fig. 7a are all 20-25 m, while in Fig. 4a they are 25-35 m over much of the

domain. This is what one might expect comparing these two simple observing

patterns. It also demonstrates the usefulness of the Kalman filter in per-

forming observing systems simulation experiments (OSSE) for much more compli-

cated observing patterns and systems.

Figures 8 and 9, corresponding to Fig. 7, show the forecast error standard

deviations in u and v, respectively, for Experiments 3-6. Again the degree of

complexity is greater than in the first two experiments (Figs. 1 b, c, and

4 b, c), but less than in Fig. 7. The wind information appears to propagate

zonally, rather than northwest-to-southeast, and is symmetric with respect to

the latitude line j=9. The perpendicular observing system appears roughly as

effective as the parallel one in reducing forecast errors .in u and v: compare

Figs. 8a, 9a with Figs. 4b, 4c. Figures 8 and 9 also show the success of the
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banded approximation: everywhere in Fig. 9, and away from the boundaries in

Fig. 8, the differences between panels are very slight.

Figure 10 shows the + correlation at the central point (9,9) for each

of Experiments 3-6. The small square in Figs. O10b-d indicate the bandwidth em-

ployed. The banded approximation handles the correlations quite accurately.

Even for bandwidths as small as b=3 (Fig. 10d), contours from 0.3 upwards are

placed well (cf Fig. 10a). Only the 0.1 contour, indicating a negligible corre-

lation for the purposes of data analysis, is misplaced slightly. Figures 11 and

12, which show the u-u and v-v correlations corresponding to Fig. 10, also de-

monstrate the accuracy of the banded approximation: only the +0.1 contours are

distorted slightly.

We have carried out to date a number of experiments at resolutions of up to

60 x 60 points over our 6000 x 6000 km grid. As shown in Table I, the banded

approximation is of utmost importance in these high-resolution experiments.

The results are encouraging: the banded approximation appears to retain its

accuracy, independently of resolution. The reason for this is that, as reso-

lution is increased, we have found that the characteristic length scales of

the forecast error correlations decrease proportionately. One can expect this

to be strictly the case only when model errors are uncorrelated (as they were

in our experiments), or at least have correlation length scales which decrease

proportionately with resolution, and are large enough to overwhelm the spreading

of correlations induced by dynamical effects (compare Figs. 2 and 5). Theore-

tical work in progress is aimed toward determining the circumstances under

which model error due to discretization of the governing differential equations

satisfies these two requirements..
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VII. Concluding Remarks

We have devised and implemented a number of techniques which, taken toge-

ther, render the Kalman filter practical for assimilating data in two spatial

dimensions. Numerical experiments using a two-dimensional shallow-water model

demonstrate, in a fairly realistic setting, some of the advantages offered by

the Kalman filter over the Oi methods in current operational use.

Our ultimate goal in this work is to develop a Kalman filter which is

suitable for routine assimilation of data into a fully three-dimensional model.

Experience gained with the two-dimensional code suggests that this goal is well

within reach, although not without additional refinements to our method. Im-

provements mentioned in the text include using a fully implicit forecast model,

storing covariances compactly by separating variances and correlations, and

using extrapolation techniques in the banded approximation. We are currently

exploring these possibilities, as well as additional ones, which should further

reduce the amount of work required by the Kalman filter, with little effect on

its accuracy.
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Appendix A. Diagonalwise Matrix Triple Product

Here we develop an efficient algorithm for evaluating the matrix triple

product appearing in the covariance forecast equation (2.4b), which is of the

form

0 dc = A B A (A.1)

where A and B are large square matrices, stored by diagonals, and where B and

C are symmetric, BT=B and CO=C. The algorithm obtains each diagonal of C in

turn, by multiplying appropriate diagonals of A and B. For full matrices A and

B, the diagonalwise algorithm has about the same computational complexity as

standard row-column algorithms. In our application, A has only a small number

of nonzero diagonals and B does also when the banded approximation is employed.

The diagonalwise algorithm gains considerable efficiency by exploiting this

fact. Vectorization of the algorithm is over the elements of each nonzero dia-

gonal. The vectors (diagonals) are long since A and B are large, an ideal

situation for calculation on the CYBER 205.

First we introduce a notation which describes how the matrices are stored.

For a general matrix G of dimension N x N, we number from 1 to N the diagonals

from the main diagonal downwards. Diagonals above the main diagonal are num-

L 
bered 2 to N. Thus, suppose G and G are the lower and strictly upper trian-

gular parts of G,
L 0 =::0 :~~~~ + ,G~~~~~ .. 0~ ; ;(A.2)

L
G. Oo

0~ ..A '10N e 0l.. ·o i: : (A.3b)Gc ati~ saess'LM- i1,,,jl.0(.b
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Letting

ffi =
: A-j*\; ~ X~-- 5 nD +1 \ ;) Ft : 0 (A.4asb)

we then define
L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~B.~ . j. ~ 1 ~ ~ 

LIY G 'AiL (_ G. i'° Ar ),,. o, i : ' ' + , (A.5a)

:G sn _- - G o(r %-= ).. ,, k= .- i (A.Sb)
4,l L

[~ [i~ is the element of the YV diagonal of G ,and

simiar yforG
u GL ,,Gj n

similarly for GLA .l u]. Notice that G - j if G is symmetric.

To store G , say, we retain an array ( ] containing the storage

L
address of the first element of each nonzero (i.e., stored) diagonal of G ;

the address of the element is then simply 0((]) i-l if the4~~~~~~~~~~~~~~
diagonal is stored. If the Y: diagonal is zero (not stored),

it is flagged by setting O .

To describe the diagonalwise matrix multiplication algorithm, we first

expand (A.1) in row-column form and split the result into upper and lower tri-

angular parts. Letting the dimension of A, B and C be I x I, the

element of C in (A.1) is simply.

k1 (A.6)C^: =:\ ? %*'tAiR ^ Q,0 4 ;i 
or

C i=0- ~E~~~~~~~~~ t~i R : : : 9 (A.7a)

where

IlFl: I
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L
Since C is symmetric, we need only calculate its lower triangular part CL .

For ~ , (A.7a) can be split into three parts

A I

+~~~~~T ~~~±~~Z ~~~~ T ~~(A .8)

Notice that the first two sums in (A.8) reference only the lower triangular

part of A and the last one references only the strictly upper triangular part

of A while the first sum references only the strictly upper triangular part

of T and the last two reference only the lower -triangular part of T: we have

L 31 L U L L Li LA. T, + TL (A9a)kzk JA)x 

Similarly, (A 7b) can be rewritten as

L iX _p g. + L t) A(A.9b)
TL 'Bm + Y- A~ A~j, \,

L L L ' - 0 (A.9c,
* ; T4n 'Z E tIk A + u j A, (A.9c)

The symmetry of B was used in the last sum in (A.9b) and the last two sums in

U
(A.9c); B is not stored or referenced.

The diagonalwise multiplication algorithm evaluates each of the nine sums

in (A.9) by diagonals. We describe in detail how the first sum in (A.9b),

L L

(A .10)

is obtained; the procedure for the remaining sums will be clear by analogy.

To begin we write (A.10) in cumulative sum notation, i.e.

:~ :L sow k - )1, ~. , I T 0 :(A.1 la)
-4o y :'i:, . h : : as(A lib)

*o TAT ± j . -(A.1lc)
0 T LiL <, + M3L t ; 0 2 (Aolld)

T: i E [ k A"
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The notation _ means to replace the left-hand-side by the right-hand-side;
Li

Jv ~~~~~~~initially, which wethus (A.11c,d) are equivalent to (A.10) if I 0 initially, which we

take to be the case.

The two loops (A.11a,b) indicate that the operation (A.llc,d) is to be

carried out for each element (k,j) of the lower triangular matrix cf.

(A.3a). These two loops can be replaced by one loop over the diagonals of TL

and a second over the elements along a diagonal of T comparing (A.3a) with

(A.5a), we see that (A.11) is equivalent to

101C Y~ (A.12a): ox nw= I ), , I 0 : 0:0 Ala

: - , . (A.12b)
Off R = a,.. ..... , j 0 - ;; R ~~~(A.12c)

I. LL ^8 t w7+:3<- , .0 t (A 12d)

The first subscript on in (A.12d) follows from the definition of the

diagonal index T of ,i.e.,:~~~~~~~~~~~ n -| , : : : :(A.13a)
cf (A.4a), so that : ~~~~k =~~~±N\\~ iL~ + :' .(A.13b)

is the first subscript of B. The index k in (A.11) has been replaced

entirely by the index YiT in (A.12).

The inner loops (A.12b,c) reference part of the lower triangular matrix

A in (A.12d), namely they reference the upper-left-most submatrix of AL

of dimension (-i n l-t) x (I - iX i, ) . Again comparing (A.3a) with (A.5a),

we find that (A.12) is equivalent to

t non ,) ,.. ) I (A.14a)

·~of Y,, -i, T,_ -yn+ I (A.i4b)

, = ,Al1K., I[A-I nT- AI T (A.14c)

:T"[l> ^-in :-A T [+ At rT] +%[ ,nt n _T]A 11 . (A.14d)



38 

The index j has been eliminated in passing from (A.12d) to (A.14d) by using

the definition of the diagonal index e of A ,i.e.,

(A.15a)

cf. (A.4a), which implies that 

I' A . (A.15b)

Equations (A.14a-d) represent the algorithm for calculating the first

sum (A.10) in (A.9b). The algorithm is vectorized over the innermost loop

(A.14c): the vector length is I -' nXt . Equation (A.14d) states

that, for given Y and E ,multiply together diagonals Y of and

·en:O-\ of % and add the result to diagonal nT of , offset by

V\ \ elements. The remaining sums in (A.9a-c) are obtained in a similar

manner.

The overall algorithm for (A.9a-c) requires storage for only one diagonal

u~~~~~~~~~~~~~~~
of % or I ,rather than for the entire matrices and T themselves:

the diagonals of T or 7 are calculated only as they are needed in (A.9a).

This is possible because the loop on Y is the outermost loop in (A.14), as

it is for the other sums in (A.9b,c), and the (vectorized) loop over the ele-

ments of a diagonal of T or is the innermost loop for the sums in

(A.9a). When the banded approximation is used, it is only (A.9a), and not

(A.9b,c), which is approximated: only those diagonals of C within the specified

bandwidth are calculated, of course, but all nonzero diagonals of T are calculated.

The algorithm, as it stands, exploits the symmetry of B and C to reduce

both storage and execution-time requirements: only and C are calcu-

lated and stored. It also reduces execution time by using the fact that A

(the model dynamics) is a banded matrix with small bandwidth: only those dia-

gonals of T and T 'which multiply nonzero diagonals of A and A in(Ao9a)aarescalculatednin

(A.9a) are calculated in (A.9bc). It is also possible to reduce storage
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requirements further by exploiting the small bandwidth of A. If A were
L L

diagonal then obviously could be overwritten on *. More generally,

for any A, C can be overwritten on if auxiliary storage roughly the

same size as that for A is provided. We have not yet implemented this idea.
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Appendix B. Serial Processing of Observations

Here we prove the 'equivalence of (4.2) and (4.6). It suffices to show the

equivalence for J=2; the general case follows by an inductive argument.

We begin by writing (4.2) in a more convenient form. From (4.2a) we have

YXH0PIA + P I;

or

or

K IV? I\ R' + K -¶ P U :

Kz= (1 - \&% ?, " X, I 0

which, from (4.2b), can be written as

so that (4.2c) becomes

LAS- + OL 

Now, according to (4.3),

so that (B.2) can be written as

o :p lt - ts- 7 0lt: I W~~~j:;0M 

(B.1)

(B.2)

(B.3a,b,c)

(B.4)

or -] -+,4 k W 0\Z VS ~ ' 4I(li xil'j ~I / + ~ (~1 'v

The Woodbury formula states the two equations

C = B - KA \ABrRY) AB) (B.5a)

C-1 = -1
-AT -'A (B.5b)

are equivalent for arbitrary conformable matrices A, B, C, R, provided the

indicated inverses exist. Since (4.2a) substituted into (4.2b) gives
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it follows that

k¢')" p (.¢)1 + .,"- ~ (B.6)

which is a statement that the analysis accuracy is the sum of the forecast

and observation accuracies. Substituting (B.3a,b) into (B.6) gives

(,'¢ ky) -P) R ,r;aB 1 .;:;(B.7)

We will show the desired equivalence by showing that (B.4) and (B.7) hold for

the algorithm (4.5, 4.6, 4.7).

To show that (B.7) holds, we simply apply the Woodbury formula again, to

(4.6a,.b) with j=l and j=2, to get(ixY' Kf ' O7 (B.8a)
(?,.' =- (,') + ,; q',,. ~,. ; ; : (B.8b)

substituting (4.5a, 4.7a) here then gives (B.7). To verify that (B1.4) holds,

we write (4.6c) for j=l and j=2:

vs 14t([ -+ t I ) (B.9a)

- ~ ~ [^ ;0t P. ts X s ( < 0 % > ) z 7 (B.9b)

where we have used an argument similar to that leading to (B.2). Substituting

(B.9b) into (B.9a) gives 

1w - + ( t- T.w 4 As 
'T +IL

or
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Now, premultiplying (B.8b) by '? and postmultiplying by P

or

(I. - ?'i

Using (B.11) in (B.10), and using (4.7a,b), gives (B.4).

gives

(B.11)

V: 1 +X ?I X'R -,f, I 

-1
1� � ?��I I";) � I'�S
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Appendix C. Finite-Difference Scheme

Letting iVI (IA pJb), the shallow-water system (5.1) can be written in

flux form as

(C.la)

where

A 0 IUi
A-o 0 :

o0

o)C=°I 0 l) -\ 0 0 1
: lo I ol (C.lb,c,d)

We will discretize (C.1) on a uniform grid of I x J points and denote the

elements of the discrete state vector by

for si=,2,...,I -a~t-'),(i)nd k=0,1,2,(C.2a)
for i=1 ,2,...,I, j=1,2,...,J,-and k=0,1,2,.*. ., where

((.2b,c)

and

We let

(C.2d,e)

Ax & 0 \ t 04 -X0~~~ : 0 ~(C.3a,b)

and define the difference operators %X and by

% < +'*'y t09r; *$ _vC.~ -14;9Llj , tM * = @^^ j t j(C.4a,b)
and the averaging operators and by

Ax IC + 3t, - 1),> - ti *,-) (C.4c,d)

The Richtmyer two-step version of the Lax-Wendroff scheme leads readily

to algebraic formulas for the elements of the dynamics matrix . The first

step of the scheme, as it is usually applied, calculates provisional values at

centers of grid boxes,

u5*t + Z'X Aw + Itb + C W_ :0=:CD

I-O-U')

C,

I__ \( tz C Q O f) ~~~~~~~~~~~~~~~~~V"' .~~~X-Y =: tk
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< '+~ ffigPXA~~ '<~~ M Lj k~ < j (C.5a)

for i=1,2,...,I and j=1,2,...,J-1, where the operator L is defined as

L, - \A7 j~y Aj + E + Cc.5b)
The second step uses these values to calculate

~ *~ X g = ;>f -L j g~gX 0 (C.5c)

for i=1,2,...,I and j=2,3,...,J-1 i.e., the values at the new time step on

the original grid, excluding the north and south boundaries. We will combine

(C.5a) and (C.5c) alongwith-the boundary treatment for u and v (described

later), to give provisional values J at all grid points. Then a boun-

dary treatment for 4 will be applied to give the final values VS .

Thus will be a composition of an interior operator and a boundary

* operator a , 1 _ '[ and

(C.6)

Most of is just the identity; does most of the work.

To arrive at formulas for the elements of , we first expand (C.5c)

using (C.5b) and (C.4a-d), to find

X ibl AL 5 b~~~t A~~t asAL*7

(C.7a)

where

= 0t , (, jl A-j +_ t):\(C.7b)
\4 ; A; ( >X A i; - )8 ti - + at tj L) (C 7c)
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Substituting (C.5a) into (C.7a) and again expanding operators gives finally

_ ltMok +OI No, AC li j N1o N%1

Jx ~ ~ ~ ~ ~ ~ ~~AV

00~~~~, N ~- ts ,3I~iw ~ - L}r Nil II'si\' I

0 ~~ ~ - |,i I-v L"~' '"°'sd4|d ~ ]0 ~',6' (C.8a)
where

Equation (C.8a) gives for each interior point i=1,2,...,I, j=2,3,...,J-1,

the value of (i.' directly in terms of values at neighboring grid points at

the previous time step. Each bracketed expression in (C.8a) is a 3 x 3 matrix,

and is composed of these 3 x 3 matrices. The symbol I in (6.8a,b) denotes

the 3 x 3 identity matrix, not the number of grid points in the x-direction.

The boundary condition

-r ~~~~~ =B~~~ ~ ~~~ %(C.9a)

at the north and south boundaries implies, according to (5.1a,b), that

0~ ~ ( +} Lk > t-+ - ; (C.9b)

and

:~ ,~~~~~ :~~ u,0n t 4f -o : : (c.9c)

there also. Equation (C.9b) is treated by the ordinary Lax-Friedrichs

scheme , 0 a

.IX (C.1o)
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The diagnostic equation (C.9c) is treated by first-order uncentered differences:

k 3A ~s _ i X X (C.1la)

Ar- ~ ·rA\ AP = ;H (C.1l1b)

According to (C.11), the boundary values of + depend on the boundary

values of u at the same time step, which necessitates our solving (C.10) be-

fore (C.11): equations (C.9a, C.10) will be formulated as part of the interior

operator , and (C.11) will be formulated in the boundary operator

We write (C.9a, C.10) as

auks n - t :s- 7 A! -r ' lj+1 ~xA i (C.12a)

for i=1,2,...,I, j=l and j=J, where

] = i o o A (51b)
0~~~~ 

(C.12b,c)

Equations (C.8, C.12) complete the description of the interior operator Il ,

which updates u, v and 4 at interior points, and u and v at the boundaries.

Note from (C.I12) that one application of also zeros out at the

boundaries. Subsequent multiplication by , described next, will refresh

at the boundaries. Equations (C.11) can be written as

(C.13a)

:~ -- ,..ge Gl-i~ : 1 (C.1i3b)

so that the boundary part of is given by
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. Y \

,.LIWA\Zs._ 

, E0 Wh. j

:1 t,- it
-*; fE bi OX 

for i=1,2,... ,I, where

The interior part of 'is simply

AA.
AA~a

for i=1,2,...,I and j=2,3,...,J-1.

(C.14a)

(C.14b)

(C. 14c,d)

(C.15)

- --E: 3 &t' I 2i

I- 1-:E + Ll :8~ 
I I-j );�*�3 �L-S0
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b

0

1

2

3

4

5

6

7

8

9

full

S/N

9

81

225

441

729

1089

1521

2025,

2601

3249

;9N

33.3

3.7

1.3

68.0

41.2

27.6

19.7

14.8

0 -;11.6
9.2

5.8

N

x

x

x

x

x

X~

x.

x

~x

x

104

104

104

102

102

102

102

102

102

102

577 x 577

192 x 192

115 x 115

82 x 82

64 x 64

52 x 52

44 x 44

38 x 38

33 x 33

30 x 30

24 x 24

Table I. Storage requirements ,for pf,a as a function of bandwidth b, computed

from the formula S = Nv2 (2b+1)d, with the number of spatial dimensions d = 2

and the number of dependent variables v = 3; S is the total required storage

and N is the total number of grid points. The first column gives the band-

width and the second gives the storage required per grid point. For avail-

able storage S = 3 x 106, the third column gives the maximum total number of

grid points and the last gives the maximum grid dimensions for a uniform

square grid. The last row gives requirements for storing the full pfa,

using the formula S = (Nv)2.



51

bandwidth b

1

3

5

7

full

20 x 21

0.11 (93)

0.48 (94)

1.05 (93)

1.84 (93)

3.24 (89)

resolution

40 x 41

0.27 (154)

1.10 (153)

2.51 (152)

60 x 61

0.52 (178)

2.15 (176)

Table II. CPU seconds required by eq. (2.4b), as a function of bandwidth and

model resolution. Numbers in parentheses are the observed megaflop (MFLOP)

rates for this computation. Peak rate of the CYBER 205 is 200 MFLOPS.

I

I

I

I

I
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EXPERIMENT # DATA DISTRIBUTION

1 parallel to basic flow

2 parallel to basic flow

3 2 perpendicular to basic

4 perpendicular to basic

5 perpendicular to basic

6 perpendicular to basic

MODEL ERROR COVARIANCE BANDED APPROXIMATION

:Q.= 0 :none

Q 0 none

flow Q 0 none

flow Q O 0 b= 5

flow Q 0O b= 4

flow Q 0O b= 3

Table III. Summary of experiments discussed in Section VI.
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Figure 1. Forecast error standard deviations for Experiment 1, (a) in the
height h = 4/ 10 ms- 2, (b) in the zonal wind u, and (c) in the meridional
wind v, at 10 days. Contour interval is one meter in (a), and one meter

per second in (b) and (c). Tick marks indicate grid points.
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0.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.

O.E

............ (a) (b)

Figure 2. ~o forecast error
correlations for Experiment 1 at
10 days, for base points (a) (9,7),

(b) (9,8), (c) (9,9), (d) (9,10),

and (e) (9,11). Asterisk in each.
0. I

panel denotes location of base
point.
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0.1 I

0.3

0.3

(a) (b) 

Figure 3. U-+ forecast error
correlations for Experiment 1 at
10 days, for base points (a) (9,7),

(b) (9,8), (c) (9,9), (d) (9,10),

and (e) (9,11).
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Figure 4. As in Figure 1, but for Experiment 2.
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Figure 5. As in Figure 2, but
for Experiment 2.

(e)

57

0.

-- I (b)

B

i

I1111111101
IiI I I I I I 

(c)

a.
).1

(d)



O. I

(a)

Figure 6. As in Figure 3, but

for Experiment 2.
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(b)
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(c) : (d)

Figure 7. Forecast error standard deviations in the height field at 10 days
for (a) Experiment 3 (no banded approximation), (b) Experiment 4 (bandwidth
b = 5), (c) Experiment 5 (b = 4), and (d) Experiment 6 (b = 3).
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2. :

0 1. .0

,_ 7 ~~~~.0 .6__. TC7.07CD 

(a).; If. 0 t7: (G)
04 0

: 0 ; : .02C.0

(a) ~~~~~~~~~~~~~(b)

.0 G. .0

6. 

1.0
* _"_"' "_--'- ----"---- "-"- -- - X D _ 0 7 V D ~ .4. 0;-(c . :. 0 02. 

2.0

(c) ~~~~~~~~~~~~~(d)

Figure 8. As in Figure 7, but for the zonal wind u.
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Figure 9. As in Figure 7, but for the meridional wind v.
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(d)

Figure 10. As in Figure 7. but for - forecast error correlations at
point (9,9). The squares in figures 10 b-d indicate the bandwidth. Contours
extending outside:the squares in Figures 10 c,d are an artifact of the con-
touring routine.
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(d)

Figure 11. As in Figure 10, but for u-u forecast error correlations at
point (9,9).
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(a)

(c)

(b)

(d)

Figure 12. As in Figure 10, but for v-v forecast error correlations at
point (9,9).
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